Факторна структура суб’єктивного благополуччя молодих українців
Abstract
Despite the relatively long history and theoretical and practical significance of studying the subjective well-being of individuals, there is currently no consensus regarding its structure. It was widely recognized that life satisfaction and positive and negative affects are components of subjective well-being; however, the relationship among these components within a single construct remains a subject of debate. The main aim of this study was to investigate the factor structure of subjective well-being by comparing competing theoretical models of the construct’s conceptualization on a sample of Ukrainians (N = 1111 higher education students; age range 18–26 years; 59.0% women, 41.0% men). Methods. Data collection was conducted via the online service Google Forms using Ukrainian versions of the Satisfaction with Life Scale (SWLS) and the Scale of Positive and Negative Experiences (SPANE). To assess the fit of the empirical data to the theoretical models of the structure of subjective well-being, traditional and bifactor confirmatory factor analysis, as well as classic exploratory structural equation modeling and its bifactor variant were applied. The selection of the best model from the competing ones was based on Akaike’s information criterion weights, which consider both the accuracy of the model description and its parsimony. Results. Four models of the factor structure of subjective well-being demonstrated adequate correspondence to the empirical data according to traditional criteria. The correlations between the three latent factors of subjective well-being were moderate and aligned with the expected directions. Akaike information criterion weights indicated that the bifactor model of exploratory structural equation modeling best describes the data from the examined set of candidate models. The consideration of cross-loadings between the items of the questionnaires in this model led to a more accurate representation of the structure of subjective well-being. Measurement invariance across gender was achieved at the configurational, metric, and scalar levels according to this model. Discussion and Conclusions. The bifactor model of exploratory structural equation modeling, featuring a strong general integral factor of subjective well-being and three corresponding subgroups, reliably reflects the three-component structure for both men and women.
Downloads
References
Brown T. A. Confirmatory factor analysis for applied research (2nd ed.). New York: Guilford Press. 2015. 462 p. https://lib.ugent.be/catalog/rug01:002199491
Busseri M. A. Examining the structure of subjective well-being through meta-analysis of the associations among positive affect, negative affect, and life satisfaction. Personality and Individual Differences. 2018. Vol. 122. P. 68–71. URL: https://doi.org/10.1016/j.paid.2017.10.003
Busseri M. A., Quoidbach J. The structure of everyday happiness is best captured by a latent subjective well-being factor. Journal of Research in Personality. 2022. Vol. 96. P. 1–13. https://doi.org/10.1016/j.jrp.2021.104177
Busseri M.A., Sadava S.W. A review of the tripartite structure of subjective well-being: implications for conceptualization, operationalization, analysis, and synthesis. Personality and Social Psychology Review. 2011. Vol.15(3). P.290–314. https://doi.org/10.1177/1088868310391271
Chen F. F., Bai L., Lee J. M., Jing Y. Culture and the structure of affect: A bifactor modeling approach. Journal of Happiness Studies: An Interdisciplinary Forum on Subjective Well-Being. 2016. Vol. 17(5). P. 1801–1824. https://doi.org/10.1007/s10902-015-9671-3
Chen F. F. Sensitivity of goodness of fit indexes to lack of measurement invariance. Structural Equation Modeling: A Multidisciplinary Journal. 2007. Vol. 14(3). P. 464–504. https://doi.org/10.1080/10705510701301834
Daniel-González L., de la Rubia J. M., Valle de la O. A., García-Cadena C. H. Structure analysis of subjective well-being. Salud Mental. 2020. Vol. 43(3). P. 119–127. https://doi.org/10.17711/SM.0185-3325.2020.017
De Beer L. T., Morin A. J. S. (B)ESEM invariance syntax generator for Mplus. 2022. https://doi.org/10.6084/m9.figshare.19360808
Diener E. Subjective well-being. Psychological Bulletin. 1984. Vol. 95(3). P. 542–575. https://doi.org/10.1037/0033-2909.95.3.542
Diener E., Biswas-Diener R. Happiness: Unlocking the Mysteries of Psychological Wealth. Malden, MA: Wiley/Blackwell. 2008. 290 p. http://lib.uhamka.ac.id/file?file=digital/54861-eBPsy-12150067.pdf
Diener E., Emmons R. A., Larsen R. J., Griffin S. The satisfaction with life scale. Journal of Personality Assessment. 1985. Vol. 49(1). P. 71–75. https://doi.org/10.1207/s15327752jpa4901_13
Diener E., Wirtz D., Tov W., Kim-Prieto C., Choi D.- w., Oishi S., Biswas-Diener R. New well-being measures: Short scales to assess flourishing and positive and negative feelings. Social Indicators Research. 2010. Vol. 97(2). P. 143–156. https://doi.org/10.1007/s11205-009-9493-y
Dueber D. BifactorIndicesCalculator: Bifactor Indices Calculator. R package version 0.2.2. 2025. https://github.com/ddueber/bifactorindicescalculator
Jennrich R. I., Bentler P. M. Exploratory bi-factor analysis: The oblique case. Psychometrika. 2012. Vol. 77(3). P. 442–454. https://doi.org/10.1007/s11336-012-9269-1
Jennrich R. I., Bentler P. M. Exploratory bi-factor analysis. Psychometrika. 2011. Vol. 76(4). P. 537–549. https://doi.org/10.1007/s11336-011-9218-4
Jovanović V. A bifactor model of subjective well-being: A re-examination of the structure of subjective well-being. Personality and Individual Differences. 2015. Vol. 87. P. 45–49. https://doi.org/10.1016/j.paid.2015.07.026
Jovanović V., Rudnev M., Aryanto C. B. et al. A Cross-Cultural Evaluation of Diener’s Tripartite Model of Subjective Well-Being Across 16 Countries. Journal of Happiness Studies. 2024. Vol. 25(6). P. 1–25. https://doi.org/10.1007/s10902-024-00781-4 ·
Kaufman V. A., Horton C., Walsh L. C., Rodriguez A. The Unity of Well-Being: An Inquiry into the Structure of Subjective Well-Being Using the Bifactor Model. International Journal of Applied Positive Psychology. 2022. Vol. 7. P. 461–486. https://doi.org/10.1007/s41042-022-00077-z
Lapuente L., Dominguez-Lara S., Flores-Kanter P. E., Medrano L. A. Estructura del bienestar subjetivo mediante análisis bifactor: ¿Unidimensional o multidimensional? Revista Avaliação Psicológica. 2018. Vol. 17(2). P. 252–259. https://doi.org/10.15689/ap.2018.1702.14521.11
Lyubomirsky S., King L., Diener E. The Benefits of Frequent Positive Affect: Does Happiness Lead to Success? Psychological Bulletin. 2005. Vol. 131(6). P. 803–855. https://doi.org/10.1037/0033-2909.131.6.803
Maddux J. E. Subjective Well-Being and Life Satisfaction. Subjective Well-Being and Life Satisfaction. New York: Routledge. 2018. P.3–31. https://doi.org/10.4324/9781351231879-1
Mazerolle M. J. AICcmodavg: Model selection and multimodel inference based on (Q)AIC(c). R package version 2.3.3. 2023. https://cran.r-project.org/package=AICcmodavg
Millsap R.E. Statistical Approaches to Measurement Invariance. New York: Routledge. 2012. 368 р. https://doi.org/10.4324/9780203821961
Morin A. J. S., Arens A. K., Marsh H. W. A Bifactor Exploratory Structural Equation Modeling Framework for the Identification of Distinct Sources of Construct-Relevant Psychometric Multidimensionality. Structural Equation Modeling: A Multidisciplinary Journal. 2016. Vol. 23(1). P. 116–139. https://doi.org/10.1080/10705511.2014.961800
Morin A. J. S. Exploratory structural equation modeling. Handbook of structural equation modeling. New York: Guilford Press. 2023. P. 503–524. https://handbookofsem.com/
Muthen L. K., Muthen B. O. Mplus User’s Guide: Statistical Analysis with Latent Variables (7th ed.). Los Angeles. CA: Muthen & Muthen. 1998-2015. 870 р. https://www.statmodel.com/download/usersguide/MplusUserGuideVer_7.pdf
Myers N. D., Martin J. J., Ntoumanis N., Celimli S., Bartholomew K. J. Exploratory bifactor analysis in sport, exercise, and performance psychology: A substantive-methodological synergy. Sport, Exercise, and Performance Psychology. 2014. Vol. 3(4). P. 258–272. https://doi.org/10.1037/spy0000015
Nye C. D. Reviewer resources: Confirmatory factor analysis. Organizational Research Methods. 2023. Vol. 26(4). P. 608–628. https://doi.org/10.1177/10944281221120541
Олефір В. О., Боснюк В. Ф. Адаптація шкали психологічного капіталу (ПсиКап-12C). Інсайт: психологічні виміри суспільства. 2023. No9. С.50–71. https://doi.org/10.32999/KSU2663-970X/2023-9-4
Олефір В. О., Боснюк В. Ф. Українськомовна адаптація шкали задоволеності базових психологічних потреб. Інсайт: психологічні виміри суспільства. 2024. No 12. С. 18–43. https://doi.org/10.32999/2663-970X/2024-12-2
Олефір В. О., Боснюк В. Ф. Адаптація українськомовної версії шкали задоволеності життям Е. Дінера. Наука і освіта. 2024. No 2. С. 64–72 https://doi.org/10.24195/2414-4665-2024-2-9
Олефір В. О., Боснюк В. Ф., Малофейкіна К. О. Валідизація і вимірювальна інваріантність української версії шкали позитивних і негативних переживань (SPANE). Вісник Харківського національного, університету імені В. Н. Каразіна, серія “Психологія”. 2021. No 71. С. 34–42. https://doi.org/10.26565/2225-7756-2021-71-04
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2022. https://www.R-project.org/
Reise S. P. The rediscovery of bifactor measurement models. Multivariate Behavioral Research. 2012. Vol. 47(5). P. 667–696. https://doi.org/10.1080/00273171.2012.715555
Reise S. P., Bonifay W., Haviland M. G. Bifactor modelling and the evaluation of scale scores. The Wiley Handbook of Psychometric Testing. Chichester, UK. 2018. P. 675–707. https://doi.org/10.1002/9781118489772.ch22
RStudio Team. RStudio: Integrated Development for R. RStudio, PBC, Boston, MA. 2020. http://www.rstudio.com/
Schmukle S. C., Egloff B., Burns L. R. The relationship between positive and negative affect in the Positive and Negative Affect Schedule. Journal of Research in Personality. 2002. Vol. 36(5).P. 463–475. https://doi.org/10.1016/S0092-6566(02)00007-7
Suh E. M., Choi S. Predictors of subjective well-being across cultures. Handbook of well-being / ed. by E. Diener, S. Oishi, L. Tay. Salt Lake City. 2018. http://nobascholar.com
Tabachnick B. G., Fidell L. S. Using Multivariate Statistics (7th ed.). New York: Pearson. 2019. 1024 р. https://surl.li/asnvtw
Veenhoven R. Subjective well-being in nations. Handbook of well-being / ed. by E. Diener, S. Oishi, L. Tay. Salt Lake City. 2018. http://nobascholar.com
Wagenmakers E.-J., Farrell S. AIC model selection using Akaike weights. Psychonomic Bulletin & Review. 2004. Vol. 11(1). P. 192–196. https://doi.org/10.3758/BF03206482

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with scientific journal agree to the following terms:
• All scientific papers may be freely copied and distributed on any medium and in any format, provided that the references to the initial data of the scientific work are indicated.
• Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed Creative Commons Attribution License .
• Authors are able to enter into separate, additional contractual arrangements for the non- exclusive distribution of the journal’s published version of the work (institutional repository, your website, monograph), with an acknowledgement of its initial publication in this journal.